Terminal notions in set theory

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terminal notions in set theory

Certain set theoretical notions cannot be split into finer subnotions.

متن کامل

Notions of symmetry n set theory with classes

We adapt C. Freiling’s axioms of symmetry [5] to models of set theory with classes by identifying small classes with sets getting thus a sequence of principles An, for n ≥ 2, of increasing strength. Several equivalents of A2 are given. A2 is incompatible both with the foundation axiom and the antifoundation axioms AFA∼ considered in [1]. A hierarchy of symmetry degrees of preorderings (and of c...

متن کامل

Notions of Lawvere Theory

Categorical universal algebra can be developed either using Lawvere theories (single-sorted finite product theories) or using monads, and the category of Lawvere theories is equivalent to the category of finitary monads on Set. We show how this equivalence, and the basic results of universal algebra, can be generalized in three ways: replacing Set by another category, working in an enriched set...

متن کامل

Descriptive Set Theoretical Complexity of Randomness Notions

We study the descriptive set theoretical complexity of various randomness notions.

متن کامل

Topology in Fuzzy Class Theory: Basic Notions

In the formal and fully graded setting of Fuzzy Class Theory (or higher-order fuzzy logic) we make an initial investigation into basic notions of fuzzy topology. In particular we study graded notions of fuzzy topology regarded as a fuzzy system of open or closed fuzzy sets and as a fuzzy system of fuzzy neighborhoods. We show their basic graded properties and mutual relationships provable in Fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2001

ISSN: 0168-0072

DOI: 10.1016/s0168-0072(01)00044-6